STILLHOUSE CREEK STREAM RESTORATION – Project # 363 First Annual Monitoring Report –Final February 2008

North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652

Designed by: United States Department of Agriculture Natural Resources Conservation Services (NRCS)

CONDUCTED FOR THE NORTH CAROLINA DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES

Table of Contents

I. Executive Summary/Project Abstract	1
II. Project Background	
2.1. Project Objectives	1
2.2. Structure, Restoration Type, and Approach	2
2.3. Location and Setting	2
2.4. History and Background	
2.5. Monitoring Plan View	
III. Project Conditions and Monitoring Results	
3.1. Vegetation Assessment	8
3.1.1. Vegetation Problem Areas	
3.1.2. Current Conditions Plan View (Vegetation)	
3.2. Stream Assessment	9
3.2.1. Procedural Items	9
3.2.2. Current Conditions Plan View (Stream) 1	
3.2.3. Problem Areas Table 1	
3.2.4. Numbered issue photo section 1	
3.2.5. Fixed station photos	
3.2.6. Stability Assessment Table 1	1
IV. Methodology 1	7
4.1. Stream Methodology 1	7
4.2. Vegetation Methodology 1	7
	8

LIST OF FIGURES

Figure 1 Vicinity Map	3
Figure 2 Monitoring Plan View	7

Tables

4
•
5
5
)
1
2
ļ

APPENDICES

Appendix A Vegetation Data

- A1. Vegetation Data Tables
 - Table 1. Vegetation Metadata
 - Table 2. Vegetation Vigor by Species
 - Table 3. Damage by Species
 - Table 4. Damage by Plot
 - Table 5. Stem Count by Plot and Species
 - Table 6. Vegetation Problem Areas
- A2. Vegetation Problem Area Photos
- A3 Vegetation Monitoring Plot Photos
- Figure A1. Current Conditions Plan View

Appendix B Geomorphologic Raw Data

- B1. Current Conditions Plan View
- B2. Stream Problem Areas Table
- B3. Representative Stream Problem Area Photos
- B4. Stream Photo-station Photos
- B5. Qualitative Visual Stability Assessment Table
- B6. Cross section Plots and Raw Data Tables
- B7. Longitudinal Plots and Raw Data Tables
- B8. Pebble Counts

I. Executive Summary/Project Abstract

The Stillhouse Creek stream restoration project is located in Orange County Park, in the historic district of Hillsborough, North Carolina. The project was designed and built through a combination of efforts by the North Carolina Ecosystem Enhancement Program (NCEEP, formerly North Carolina Wetlands Restoration Program), the Orange County Soil and Water Conservation District (SWCD), Natural Resources Conservation Service (NRCS), and Orange County. It includes restoration of 1,210 feet of Stillhouse Creek from south of Margaret Lane to its confluance with the Eno River. The area placed under conservation easement occupies 2.09 acres in USGS HUC 03020201030020 (NCDWQ Neuse River Subbasin 03-04-01). Construction was completed during March 2006.

Qualitative evaluation was conducted by RJG&A on 14 June 2007. The last 2007 visit to the Stillhouse Creek site was on 27 November.

The 2007 evaluation and monitoring of the Stillhouse Creek stream restoration site indicates that the project has met all its design goals after the second post-construction growing season.

As stated below, qualitative evidence of bankfull flow was observed during the June 2007 evaluation. The crest gauge, which was installed during the June evaluation, indicated that at least one more bankfull event had occurred. The project, therefore, has met its hydrologic goals for 2007.

Four vegetation monitoring plots were installed inside the conservation easement and monitored during October 2007, pursuant to the most-recent NCEEP/CVS guidelines. The first annual vegetation monitoring results indicate that the Stillhouse Creek Stream Restoration Project has exceeded its vegetation restoration goal of 320 stems per acre by 48 percent (planted woody stem average = 475 per acre) and 545 percent (all woody stem average = 2,064).

II. Project Background

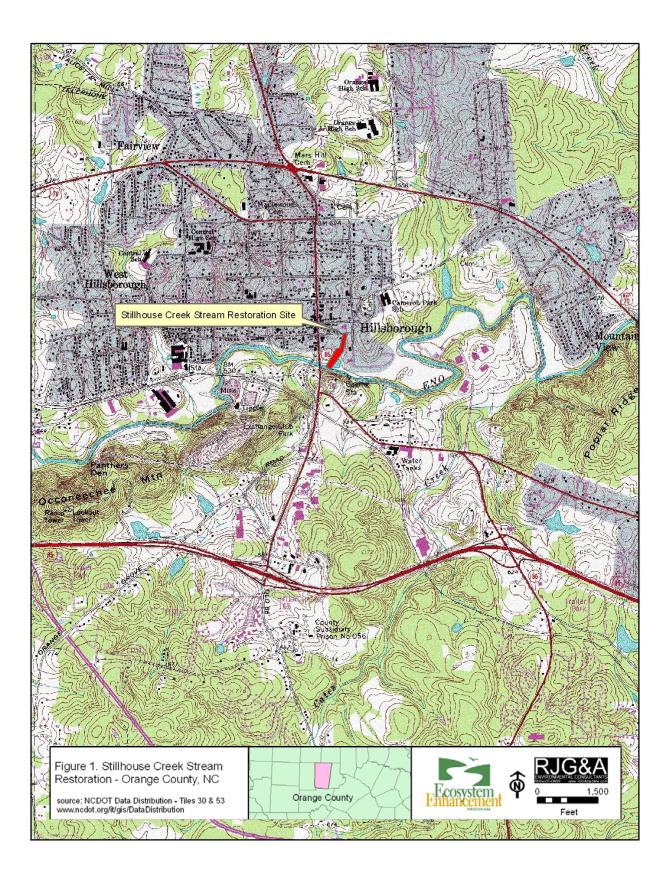
2.1. Project Objectives

RJG&A did not receive a full copy of the restoration plan, but according to the brief description in the 2005 Erosion and Sediment Control Plan, the Stillhouse Creek Restoration Project was designed to achieve the following objectives:

- Reduce stream bank erosion and prevent downcutting
- Eliminate threat to existing building foundation from lateral channel instability
- Increase nutrient and sediment uptake and retention
- Increase environmental education opportunities
- Improve terrestrial and aquatic, and semi-aquatic habitats
- Provide temporary stormwater storage
- Improve stream corridor aesthetics

2.2. Structure, Restoration Type, and Approach

According to the Erosion and Sediment Control Plan for the Stillhouse Creek Stream Restoration Project, the following changes were made to the creek (NRCS 2003). The upper 235 feet of Stillhouse Creek involved restoration of a degraded, incised stream to a stable stream with a floodplain in a confined valley. The next 400 foot reach involved construction of a new channel reach to restore the pattern, profile, and dimension to that of a stable stream with a floodplain. The restoration of the next 220 feet involved enhancement of the existing stream features, including the stabilization of eroding stream banks. The final 345 feet involved construction of a bankfull bench in a confined valley.


Coir fiber matting, live staking, and brush mattresses were installed to help stabilize the graded stream banks and the outside of meanders. A 20 foot wide buffer was planted with native woody and herbaceous species on both sides the upstream-most reach. The buffer width along the balance of the restoration project is between 20 and 80 feet.

2.3. Location and Setting

To get to the Stillhouse Creek restoration site from I-85, take exit 164 and head north on South Churton Street for 1.3 miles. Turn east on East Margaret Lane. The upstream boundary of the conservation easement is 0.1 mile east of the intersection, on the south side of the road. Its downstream boundary is at Stillhouse Creek's confluence with the Eno River. Figure 1 shows the general location of the project.

Stillhouse Creek's watershed is approximately 152 acres at its confluence with the Eno River. North of East Margaret Lane its watershed is approximately 75 acres. The entire watershed is within downtown Hillsborough and is almost entirely occupied by residential and commercial development.

Prior to its restoration, Stillhouse Creek traversed open lawn for most of its length across the Orange County Park. It had unstable and eroding banks throughout and an actively downcutting streambed that threatened the stability of an adjacent municipal building. A covered picnic shelter with a stone retaining wall was built immediately adjacent to the conservation easement boundary during June 2007.

2.4. History and Background

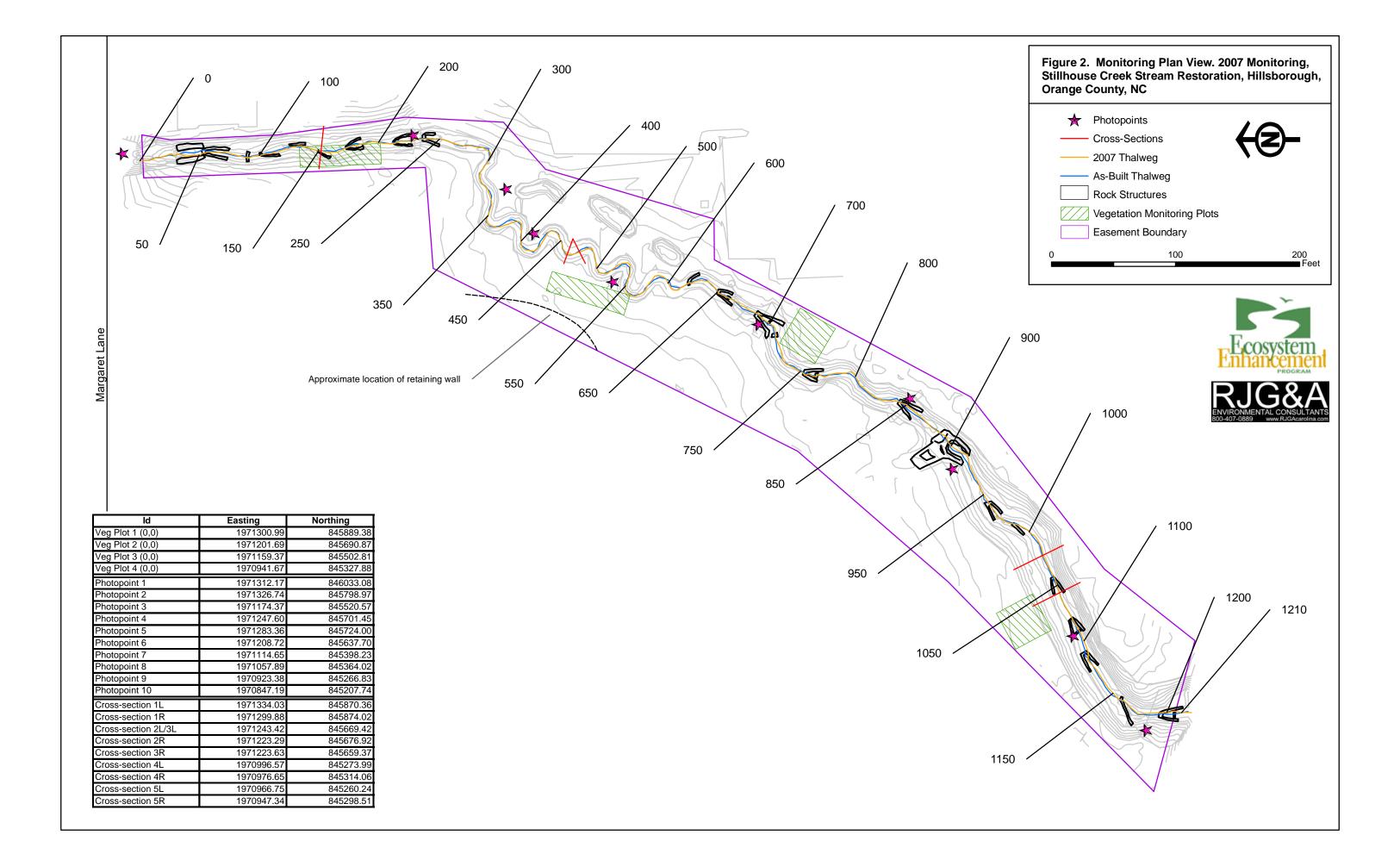
A complete copy of the Stillhouse Creek restoration plan was not provided to RJG&A. Data in Exhibit Tables I – III are based on the Sediment and Erosion Control Plan and asbuilt materials that were provided by EEP (CDM 2005). Mitigation type and approach and type rely on the narrative description of the project and Rosgen (Rosgen 2007).

Exhibit Table I. Mitigation Structure and Objectives Stillhouse Creek Stream
Restoration – EEP Project #363

Restoratio	01 – EE	r proj	ect #5	03				
Reach ID	Existing Feet	Type	Approach	Footage	Mitigation Ratio	Mitigation Units	Stationing	Comment
Reach 1	235	R	P2	235	-	-	00+00- 02+35	Shallow pools, small meanders, and steep riffles
Reach 2	400	R	P1	400	-	-	02+35- 6+35	Realigned, reconnected to floodplain
Reach 3	220	E1	P4	220	-	-	6+35- 8+55	Banks stabilized
Reach 4	345	R	P3	345	-	-	8+55- 12+10	Connected to floodprone area

Exhibit Table II. Activity and Reporting History										
Stillhouse Creek Stream Restoration - EEP Project #363										
Activity or Report	Data Collection	Completion								
Restoration Plan	-	November 2005								
Final Design – 90%	-	November 2005								
Construction	-	March 2006								
Temporary S&E mix applied	-	NA								
Permanent seed mix applied	-	NA								
Bare Root Planting	-	March 2006								
Mitigation Plan/As-built	August 2006	December 2007								
Year 1 Monitoring		December 2007								
Qualitative Evaluation	June and November 2007									
Vegetation	October 2007									
Geomorphologic	November 2007									

Exhibit Table III. Project Contacts Stillhouse Creek Stream Restoration - EEP							
Project #363							
Designer	NRCS						
Primary project design POC	-						
Construction Contractor	-						
Construction Contractor POC	-						
Planting Contractor	Fluvial Solutions						
Planting contractor POC	Peter Jelenevsky						
Planting Source	Mellow Marsh						
Monitoring Performers	RJG&A						
	1221 Corporation Parkway, Suite 100						
	Raleigh, NC 27616						
Monitoring POC	Ms. Jessi O'Neal						
	(919) 872-1174						


Exhibit Table IV. Project Background - Stillhouse Creek Stream Restoration EEP Project #363							
Project County	Orange						
Drainage Area	152 acres (0.24 square mile)						
Drainage Impervious Cover Estimate (%)	30						
Stream Order	First Order						
Physiographic Region	Piedmont						
Ecoregion	Carolina Slate Belt						
Rosgen Classification of As-built ¹							
Reach 1	B-6						
Reach 2	E-4						
Reach 3	C-4						
Dominant Soil Types							
Reach 1	Georgeville-Urban land complex						
Reach 2	Georgeville-Urban land complex						
Reach 3	Georgeville-Urban land complex and Congaree fine						
	sandy loam						
Reference Site ID ²	Upper Reach: UT to Caraway Creek (Randolph						
	County) and UT to N. Fork New River (Ashe						
	County); Lower Reach: Silas Creek (Forsyth County)						
USGS HUC for Project and Reference	03020201030020, NA						
NCDWQ Sub-basin for Project and	03-04-01, NA						
Reference							
NCDWQ Classification for Project and	C - NSW						
Reference							
Any portion of the project segment 303d listed?	No						

¹ No as-built cross-section data collected. Rosgen classification based on Year 1 monitoring cross-section data. ² No ID numbers provided by design firm, therefore reference site names included in this table.

Exhibit Table IV. Project Background - Stillhouse Creek Stream Restoration EEP Project #363							
Any portion of the project segment upstream of a 303d listed segment?No – not in NCDWQ 03-04-01							
Reasons for 303d Listing or Stressor	NA						
% of Project Easement Fenced	0%						

2.5. Monitoring Plan View

See Figure 2 for Monitoring Plan View.

III. Project Conditions and Monitoring Results

The site was initially evaluated on 14 June 2007 and appeared to be functioning as designed. First annual quantitative geomorphologic and vegetation data were collected during October and November 2007. The site was again qualitatively assessed on 14 November 2007.

3.1. Vegetation Assessment

Four representative vegetation survey plots were selected and installed in reaches 1, 2, and 3 during October 2007, pursuant to the EEP/CVS vegetation monitoring protocol. The average live, planted woody stem density for all plots was just under 12 individuals per plot (475.5 stems per acre). This exceeds the required 320 stems per acre by 49 percent. The survival rate for planted woody vegetation in Reach 1 is excellent and consists principally of silky dogwood (*Cornus amomum*), wax myrtle (*Morella cerifera*) and elderberry (*Sambucus canadensis*). The streambanks of Reach 2 are dominated by black willow (*Salix nigra*) and silky dogwood (*Cornus amomum*). On the floodplain the planted vegetation consists primarily of sycamore (*Platanus occidentalis*), green ash (*Fraxinus pennsylvanica*), and tulip poplar (*Liriodendron tulipifera*). The planted vegetation in Reach 3 includes silky dogwood (*Cornus amomum*), black willow (*Salix nigra*), and green ash (*Fraxinus pennsylvanica*) and survival of planted stems is high.

The most abundant volunteer species counted in all plots was sugarberry (*Celtis laevigata*, 40 percent of all volunteers). While not planted, this hardwood species is native to North Carolina and may contribute significantly to the project's stability and overall success.

Tables 1 through 5 in Appendix A contain specifics about vigor and damage by species and plot. Photos of the vegetation monitoring plots can also be found in Appendix A.

3.1.1. Vegetation Problem Areas

See Table 6, Figure A1-Current Conditions Plan View, and Vegetation Problem Area Photos in Appendix A.

Three vegetation problem areas were identified in Reach 2 (Figure A1, Table 1). The area close to the first foot-bridge (Stations 235-300) was probably insufficiently planted at the time of construction. Compacted or nutrient deficient soil could be the cause of the smallest problem area near the pocket wetlands (Stations 400-430) where non-woody vegetation, including sedges and coneflowers, have helped stabilize the soil. The third and largest vegetation problem area in Reach 2 (Stations 320-580) has experienced poor survival of planted woody stems and is currently dominated by fescue. At this point, no remedial action is recommended, but the areas should be observed and replanting may be necessary in the future.

In Reach 3 (Figure A1) the terrace across from vegetation monitoring plot 3 (Stations 715-830) has sufficient planted stem survival, but vigor is low. This may be due to poor soils or soil compaction that occurred prior to or during construction. The right top of bank area near cross-sections 4 and 5 (Stations 1000-1060) has a low survival of planted woody vegetation. Although, sedges and other non-woody vegetation are well-established in this area, it should be monitored in case remedial action is needed in the future. No remediation is recommended at this time.

3.1.2. Current Conditions Plan View (Vegetation)

See Figure A1 in Appendix A for the Current Conditions Plan View for vegetation.

3.2. Stream Assessment

RJG&A staff evaluated the condition and success of the Stillhouse Creek Stream Restoration project during June and November 2007. Overall, the site is maintaining its as-built dimension, pattern, and profile.

3.2.1. Procedural Items

3.2.1.1. Morphometric Criteria

After a detailed preliminary evaluation in June 2007, RJG&A staff selected and installed 5 cross section sites for annual monitoring. The first annual monitoring data were collected during November 2007. For the longitudinal profile, the entire stream restoration (1,210 linear feet) was surveyed. Survey points included thalweg, bankfull, and beginning of each stream feature. Photographs were taken at all cross sections and at the 10 permanent photo locations (established by RJG&A in June 2007).

As the quantitative data and qualitative evaluations indicate for the first monitoring year, the structure and function of the entire restoration project closely match the as-built conditions (i.e. little change has occurred).

3.2.1.2. Hydrologic Criteria

A crest gauge was installed on the Stillhouse Creek site on 14 June 2007. The gauge was checked on 7 October 2007 and no bankfull event had occurred, but when the gauge was checked again on 27 November 2007, a bankfull event had occurred. Based on NC CRONOS data from the weather station (KIGX) at the Chapel Hill Airport, this event most likely occurred between 24 October and 27 October 2007, during which a total of 4.47 inches of rainfall was recorded. On-site qualitative evidence observed in June indicate that at least one bankfull event (rack and drift lines and downed vegetation/stems above the bankfull elevation) had occurred prior to crest gauge installation in 2007 (Table VIII).

Exhibit Table V. Verification of Bankfull Events – Stillhouse Creek Stream Restoration - EEP Project #363										
Date of Data CollectionDate of Occurrence (mm/dd/yy)MethodPho (if avail										
07 Oct. 2007 and 23 Nov. 2007	07 Oct. 2007- 23 Nov. 2007	Crest Gauge	NA							
June 2007	January - June 2007	On-site highwater indicators	NA							

3.2.1.3. Bank Stability Assessments

Table VI BEHI and Sediment Export Estimates only apply to Monitoring year 5 and were not performed during 2007 (monitoring year 1).

3.2.2. Current Conditions Plan View (Stream)

The Current Conditions Plan View for streams can be found in Appendix B.

3.2.3. Problem Areas Table

Minor problem areas were observed in November 2007 including the formation of small bars along riffles, piping, and bank scour. Exhibit Table B.1 in Appendix B identifies these problem areas by station, along with suspected causes and representative photos. In all cases, the problems are considered a low-priority and are probably due primarily to the low flow in the channel resulting from this year's drought. These areas should be monitored, especially if record-low rainfall levels continue into 2008.

3.2.4. Numbered issue photo section

Representative problem area photos listed in Table B.1 can be found in Appendix B immediately following Table B.1.

3.2.5. Fixed station photos

Permanent photopoint images can be found in Appendix B.

3.2.6. Stability Assessment Table

Exhibit Table VI. Cate	gorical Stre	am Feature V	isual Stability	Assessment-
Stillhouse Creek Stream	n Restoratio	on - EEP Proje	ect #363	
	Reach	n 1 (245 feet)		
Feature	Initial	MY-01	MY-02	MY-03
A. Riffles	100%	100%		
B. Pools	100%	100%		
C. Thalweg	100%	NA		
D. Meanders	100%	NA		
E. Bed General	100%	NA		
F. Vanes/J Hooks, etc.	100%	100%		
G. Wads and Boulders	100%	NA		
	Reach	n 2 (400 feet)	·	
A. Riffles	100%	99%		
B. Pools	100%	98%		
C. Thalweg	100%	93%		
D. Meanders	100%	75%		
E. Bed General	100%	NA		
F. Vanes/J Hooks, etc.	100%	100%		
G. Wads and Boulders	100%	NA		
	Reach	n 3 (565 feet)	•	
A. Riffles	100%	100%		
B. Pools	100%	82%		
C. Thalweg	100%	94%		
D. Meanders	100%	75%		
E. Bed General	100%	NA		
F. Vanes/J Hooks, etc.	100%	90%		
G. Wads and Boulders	100%	NA		

Exhibit Table VII. Baseline Morphology and Hydraulic Summary Stillhouse Creek Stream Restoration – EEP Project #363 Segment/Reach: 1 – 3 (855 feet)																		
Parameter	USC	GS Gage	S Gage Data		Regional Curve Interval		Pre-Existing Condition			Reference Reach Stream			Design			As-built		
Dimension	Min	Mean	Max	Min	Mean	Max	Min Mean Max		Min Mean Max		Min Mean Max		Max	Min Mean Max				
BF Width (ft)	-	-	-	-	-	-	6.0	7.0	7.6	7.3	9.7	12.4	7.5	-	9.5	-	-	-
Floodprone Width (ft)	-	-	-	_	-	-	17.1	35.1	47.0	27.0	49.6	74.0	23	-	176	-	-	-
Bankfull Cross Sectional Area (ft ²)	-	-	-	-	_	-	5.6	7.3	8.1	7.3	10.35	13.2	-	9.0	-	-	-	-
Bankfull Mean Depth (ft)	-	-	-	-	-	-	0.8	1.0	1.4	0.9	1.1	1.3	0.95	-	1.2	-	-	-
Bankfull Max Depth (ft)	-	-	-	-	-	-	1.2	1.7	2.0	1.6	1.8	2.0	1.3	-	2.4	-	-	-
Width/Depth Ratio	-	-	-	-	-	-	4.4	7.1	9.3	7.3	9.3	14.0	6.0	-	10.0	-	-	-
Entrenchment Ratio	-	-	-	-	-	-	2.3	5.1	6.3	2.7	5.6	10.1	2.7	-	20.7	-	-	-
Bank Height Ratio	-	-	-	-	-	-	1.0	1.13	1.4	1.0	1.06	1.25	-	1.0	-		-	-
Wetted Perimeter (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hydraulic Radius (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pattern																		
Channel Beltwidth (ft)	-	-	-	-	-	-	6	11.6	19	12.4	13.7	16.7	8.5	-	19.6	8.7	16.3	24.7
Radius of Curvature (ft)	-	-	-	-	-	-	8.7	12.2	16.5	6.5	14.6	20.5	12.8	-	23.8	4.6	10.0	32.7
Meander Wavelength (ft)	-	-	-	-	-	-	29	63	116	21.2	34.7	57.0	12.8	-	39.1	23.8	37.8	75.4
Meander Width Ratio	-	-	-	-	-	-	0.9	1.7	2.7	1.0	1.4	2.3	1.0	-	2.3	-	-	-
Profile																		
Riffle Length (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.4	6.6	15.3
Riffle Slope (ft/ft)	-	-	-	-	-	-	-	-	-	0.00	0.0204	0.054	0.006	-	0.017	-0.003	0.029	0.140
Pool Length (ft)	-	-	-	-	-	-	11.0	22.5	46.5	7.5	11.8	17.0	8.5	-	19.6	9.4	22.8	76.0
Pool Spacing (ft)	-	-	-	-	-	-	-	37.2	-	-	21.5	-	-	15.3	-	0	5.0	18.2
Substrate																		
d50 (mm)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
d84 (mm)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Additional Reach Parameters																		
Valley Length (ft)		-			-			672			168			672			672	
Channel Length (ft)		-			-			748			267.5		1	946			855	
Sinuosity (ft)		-			-			1.1		1.6		1.4			1.3			
Water Surface Slope (ft/ft)		-			-			0.0126		0.0094			0.0086			0.011		
BF slope (ft/ft)		-			-			-			-		1	-			-	
Rosgen Classification		-			-			E4			E4/5			E4				
*Habitat Index		-			-			-			-			-			-	
*Macrobenthos		-			-			-			-			-			-	

		Exh			Creek	Stream	m Resto	nology a pration - : 4 (355)	- EEP I			nmary						
Parameter	USC	6S Gage	Data	0	ional Cu Interval	urve	Pr	Pre-Existing Condition		Reference Reach Stream			Design			A	As-built	
Dimension	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
BF Width (ft)	-	-	-	-	-	-	9.8	11.8	14.8	23.1	25.6	28.0	14.9	-	19.5	-	-	-
Floodprone Width (ft)	-	-	-	-	-	-	15.5	19.3	26.8	33.0	33.7	35.0	17.9	-	35.1	-	-	-
Bankfull Cross Sectional Area (ft ²)	-	-	-	-	-	-	19.2	21.7	24.7	68.5	43.5	48.9	18	-	22	-	-	-
Bankfull Mean Depth (ft)	-	-	-	-	-	-	1.7	1.9	2.0	1.5	1.7	1.9	1.1	-	1.2	-	-	-
Bankfull Max Depth (ft)	-	-	-	-	-	-	2.6	2.7	2.8	2.4	2.7	2.9	1.7	-	1.9	-	-	-
Width/Depth Ratio	-	-	-	-	-	-	4.9	6.2	8.6	12.4	15.2	17.2	12.4	-	17.2	-	-	-
Entrenchment Ratio	-	-	-	-	-	-	1.4	1.6	1.8	1.2	1.3	1.4	1.2	-	1.8	-	-	-
Bank Height Ratio	-	-	-	-	-	-	2.5	2.6	2.9	1.0	1.0	1.0		1.0		-	-	-
Wetted Perimeter (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hydraulic Radius (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pattern														÷				Ì
Channel Beltwidth (ft)	-	-	-	-	-	-	-	-	-	40	43.7	51	23.8	-	39	12.0	19.6	27.9
Radius of Curvature (ft)	-	-	-	-	-	-	-	-	-	19.5	41.25	54.0	29.8	-	39.0	25.4	40.3	55.4
Meander Wavelength (ft)	-	-	-	-	-	-	-	-	-	130	168	245	39	-	94	96.2	132.6	187.8
Meander Width Ratio	-	-	-	-	-	-	-	-	-	1.6	1.7	2.0	1.6	-	2.0	-	-	-
Profile																		
Riffle Length (ft)	-	-	-	-	-	-	-	-	-	9.5	18.4	29.0	6.0	-	19.5	2.5	17.3	40.1
Riffle Slope (ft/ft)	-	-	-	-	-	-	-	-	-	0.008	0.012	0.016	0.017	-	0.034	0.043	0.129	0.164
Pool Length (ft)	-	-	-	-	-	-	-	-		8.2	31.2	68.0	5	-	53	15.0	70.1	42.6
Pool Spacing (ft)	-	-	-	-	-	-	-	-	-	27.2	62.4	129.0	39	-	94	0	11.1	40.1
Substrate																		
d50 (mm)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
d84 (mm)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Additional Reach Parameters																		
Valley Length (ft)		-			-			282			325			282			282	
Channel Length (ft)		-			-		1	314			348			314			355	
Sinuosity (ft)		-			-			1.1			1.07			1.1			1.3	
Water Surface Slope (ft/ft)		-			-			0.017			0.008			0.017			0.020	
BF slope (ft/ft)		-			-			-			-			-			-	
Rosgen Classification		-			-			G4c/1			B4c/1			B 4/1			-	
*Habitat Index		-			-			-			-			-			-	
*Macrobenthos		-			-			-			-			-			-	

		-		Reach	1 (235 fee	t)									
Parameter		Cross	Section 1	(Riffle)											
Dimension	MY1	MY2	MY3	MY4	MY5										
BF Width (ft)	18.4														
Floodprone Width (ft)	34.44														
BF Cross-Sectional Area (sq ft)	24.28														
BF Mean Depth (ft)	1.32														
BF Max Depth (ft)	2.71														
Width/Depth Ratio	13.95														
Entrenchment Ratio	1.87														
Bank Height Ratio	1.19														
Wetted Perimeter (ft)	19.5			T		1									
Hydraulic Radius (ft)	1.24			T		1									
Substrate						1									
d50 (mm)	0.04														
d84 (mm)	0.57														
		Y-01 (200) 7)	1	MY-03 (200	9)	Μ	IY-03 (2	2010)	Μ	IY-04 (2	011)	М	Y-05 (2)12)
Pattern	min	max	mean	min	max	mean	min	max	mean	min	max	mean	min	max	mear
Channel Beltwidth (ft)	7.6	12.1	10.6												
Radius of Curvature (ft)	NA	NA	NA												
Meander Wavelength (ft)	NA	NA	NA												
Meander Width ratio			0.6												I
Profile															
Riffle length (ft)	2	14	8.3												
Riffle slope (ft/ft)	-0.04	0.06	0.01												
Pool length (ft)	10	30	19												
Pool spacing (ft)	0	14	7.3												
Additional Reach Parameters		MY-01		1	MY-02			MY-0	3		MY-04	4		MY-05	i
Valley Length (ft)		230													
Channel Length (ft)		245													
Sinuosity		1.07					1			l					
Water Surface Slope (ft/ft)		0.009					1			1					
BF slope (ft/ft)		0.01													
Rosgen Classification		B6								1					
Habitat Index		NA					1			1					
Macrobenthos		NA					1			1					
Stillhouse Creek Stream Restoration				1			1			1	20	07 Moni	toring R	Report	

Exhibit Table VIII. Morphology and Hydraulic Monitoring Summary – Stillhouse Creek Steam Restoration – EEP Project #363

Stillhouse Creek Stream Restoration EEP Project #363 RJG&A 2007 Monitoring Report Year 1 of 5 Page 14

					ach 2 (40	1					1				
Parameter		Cross S	Section 2	(Pool)			Cross S	Section 3	8 (Riffle)						
Dimension	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5					
BF Width (ft)	15.82					12.41									
Floodprone Width (ft)	94.5					107									
BF Cross-Sectional Area (sq ft)	22.62					8.61									
BF Mean Depth (ft)	1.46					0.69									
BF Max Depth (ft)	2.62					1.14									
Width/Depth Ratio	11.07					17.87									
Entrenchment Ratio	6					8.7									
Bank Height Ratio	1.17					1.13									
Wetted Perimeter (ft)	17.21					13.12									
Hydraulic Radius (ft)	1.31					0.66									
Substrate															
d50 (mm)	6.85					6.85									
d84 (mm)	14.59					36.88									
	М	Y-01 (200)7)	N	IY-03 (20		Μ	IY-03 (20)	10)	МУ	7-04 (20	11)	Μ	Y-05 (2	.012)
Pattern	min	max	mean	min	max	mean	min	max	mean	min	max	mean	min	max	mean
Channel Beltwidth (ft)	9.1	23.6	18.5												
Radius of Curvature (ft)	2.6	11.6	4.9												
Meander Wavelength (ft)	27.2	40	33												
Meander Width ratio			1.3												ļ
Profile															
Riffle length (ft)	7	20	10.9												
Riffle slope (ft/ft)	-0.07	0.06	0.003												
Pool length (ft)	9	28	17												
Pool spacing (ft)	0	26	10.9												
Additional Reach Parameters		MY-01			MY-02			MY-03			MY-04			MY-05	5
Valley Length (ft)		286													
Channel Length (ft)		400													
Sinuosity		1.4													
Water Surface Slope (ft/ft)		0.008													
BF slope (ft/ft)		0.007													
Rosgen Classification		C4													
Habitat Index		NA													
Macrobenthos		NA													

Exhibit Table VIII. Morphology and Hydraulic Monitoring Summary – Stillhouse Creek Steam Restoration – EEP Project #363 Reach 2 (400 feet)

Stillhouse Creek Stream Restoration EEP Project #363 RJG&A 2007 Monitoring Report Year 1 of 5 Page 15

	1 30	v			ach 3 (56	•						5			
Parameter		Cross S	Section 4	(Riffle)			Cross S	Section	5 (Pool)						
Dimension	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	1				
BF Width (ft)	12.44					8.36									
Floodprone Width (ft)	29.3					26.48									
BF Cross-Sectional Area (sq ft)	13.16					11.4									
BF Mean Depth (ft)	1.06					1.36									
BF Max Depth (ft)	2.06					1.93]				
Width/Depth Ratio	11.75					6.13]				
Entrenchment Ratio	2.36					3.17									
Bank Height Ratio	1.10					1.24									
Wetted Perimeter (ft)	13.23					9.96									
Hydraulic Radius (ft)	0.99					1.14									
Substrate															
d50 (mm)	2.67					16									
d84 (mm)	58.57					50.7									
		Y-01 (200	1		IY-03 (20		1	IY-03 (20	T		2 -04 (2 0	1		Y-05 (2	í é
Pattern	min	max	mean	min	max	mean	min	max	mean	min	max	mean	min	max	mean
Channel Beltwidth (ft)	12	27.6	20.9												ļ
Radius of Curvature (ft)	10.4	53.7	27.1											 	
Meander Wavelength (ft)	70.7	187	111.7											<u> </u>	<u> </u>
Meander Width ratio			2												
Profile														ļ	ļ
Riffle length (ft)	4	41	16.4											ļ	ļ
Riffle slope (ft/ft)	-0.004	0.12	0.04												<u> </u>
Pool length (ft)	18	48	27.9	-										ļ'	<u> </u>
Pool spacing (ft)	0	44	15.4												
Additional Reach Parameters		MY-01			MY-02			MY-03			MY-04			MY-05	;
Valley Length (ft)		507													
Channel Length (ft)		565													
Sinuosity		1.11													
Water Surface Slope (ft/ft)		0.018													
BF slope (ft/ft)		0.016													
Rosgen Classification		C4													
Habitat Index		NA													
Macrobenthos		NA													
Stillhouse Creek Stream Restoration											200	7 Monit	· 1		

Exhibit Table VIII. Morphology and Hydraulic Monitoring Summary – Stillhouse Creek Steam Restoration – EEP Project #363

Stillhouse Creek Stream Restoration EEP Project #363 RJG&A 2007 Monitoring Report Year 1 of 5 Page 16

IV. Methodology

Monitoring methodologies follow the current EEP-provided templates and guidelines (Lee *et al* 2006). Photographs were taken digitally. A Trimble Geo XT handheld mapping-grade unit was used to collect cross section, vegetation corner, photopoint, and problem area locations. Additional notations were written on the as-built plan sheets.

4.1. Stream Methodology

Methods employed were a combination those specified in the Mitigation Plan, the First Annual Monitoring Report, and standard regulatory guidance and procedures documents. Stream monitoring data was collected using the techniques described in US ACE Stream Mitigation Guidelines, US Forest Service's Stream Channel Reference Sites, and Applied River morphology (USACE, 2003; Harrelson et al., 1994; Rosgen, 1996). A South Total Station and Nikon automatic level were used for collecting all geomorphic data. Photographs facing downstream were taken at each cross section.

4.2. Vegetation Methodology

Four representative vegetation survey plots were selected and installed in reaches 1, 2, and 3 during October 2007, pursuant to the EEP/CVS vegetation monitoring protocol (Lee *et al* 2006). All plots measure 100 square meters and are either 10 meters by 10 meters, or five meters by 20 meters. The four corners of each plot (either 10x100 or 5x20 feet) were marked with 18-inch long, one-half-inch diameter galvanized steel conduit.

Level 1 (planted woody stems) and Level 2 (volunteer woody stems) data collection was performed during October 2007. Within each plot, each planted woody stem location (x and y) was recorded, and height and live stem diameter were recorded for each stem location. All planted stems were identified with pink flagging. Vegetation was identified using Weakley (Weakley 2007). Photos were taken of each vegetation plot from the 0,0 corner.

Tables 1 through 5 in Appendix A contain the data from the vegetation monitoring. Monitoring plot photos can also be found in Appendix A.

References

CDM (2005). *Stillhouse Creek Stream Restoration Project Sediment and Erosion Control Plan.* Provided by NCEEP, November 2007.

Harrelson, Cheryl, C. L. Rawlins, and John Potpondy. (1994). *Stream Channel Reference Sites: An Illustrated Guide to Field Technique*. USDA, Forest Service. General Technical Report RM-245.

Lee, Michael T., Peet, Robert K., Roberts, Steven D., Wentworth, Thomas R. (2006). *CVS-EEP Protocol for Recording Vegetation Version 4.0*. Retrieved October 30, 2006, from: http://www.nceep.net/business/monitoring/veg/datasheets.htm.

Radford, A.E., H.E. Ahles, and C.R. Bell (1968). *Manual of the Vascular Flora of the Carolinas*. University of North Carolina Press. Chapel Hill, NC.

Rosgen, D L (1996) *Applied River Morphology*. Wildland Hydrology Books, Pagosa Springs, CO.

Rosgen, DL. (1997). "A Geomorphological Approach to Restoration of Incised Rivers. In *Proceedings of the Conference on Management of Landscapes Disturbed by Channel Incision*, ed. S.S.Y. Wang, E.J. Langendoen and F.B. Shields, Jr. University of Mississippi Press, Oxford, MS.

USACOE (2003) Stream Mitigation Guidelines. USACOE, USEPA, NCWRC, NCDENR-DWQ

Weakley, Alan (2007). *Flora of the Carolinas, Virginia, Georgia, and Surrounding Areas*. Retrieved March 27, 2007 from: http://www.herbarium.unc.edu/flora.htm.

Appendix A Vegetation Data

- A1. Vegetation Data Tables
 - Table 1. Vegetation Metadata
 - Table 2. Vegetation Vigor by Species
 - Table 3. Damage by Species
 - Table 4. Damage by Plot
 - Table 5. Stem Count by Plot and Species
 - Table 6. Vegetation Problem Areas
- A2. Vegetation Problem Area Photo
- A3 Vegetation Monitoring Plot Photos
- Figure A1. Current Conditions Plan View

Table 1. Vegetation MetadataReport Prepared ByDate Prepared

Sean Doig 2/11/2008 13:21

database nameStillhouse.mdbdatabase locationC:\SeanD\EEP\07 Monitoring\Stillhouse

DESCRIPTION OF WORKSHEETS IN THIS DOCUMENT------

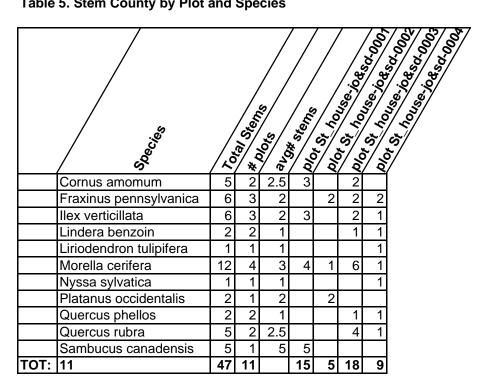
Metadata	This worksheet, which is a summary of the project and the project data.
Plots	List of plots surveyed.
Vigor	Frequency distribution of vigor classes.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Stem Count by Plot and Spp	Count of living stems of each species for each plot; dead and missing stems are excluded.

4

PROJECT SUMMARY	
Project Code	St_house
project Name	Stillhouse
Description	
length(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	

Table 2. Vegetation Vigor by Species

	Species	4	3	2	1	0	Missing
	Ailanthus altissima						
	Betula nigra						
	Carya illinoinensis						
	Carya ovata						
	Celtis laevigata						
	Cornus amomum	5					
	Fraxinus pennsylvanica	4	1	1			
	llex verticillata	4	2				
	Lagerstroemia indica						
	Ligustrum sinense						
	Liquidambar styraciflua						
	Nyssa sylvatica		1				
	Quercus nigra						
	Quercus phellos	2				1	
	Salix nigra						
	Sambucus canadensis	5					
	Ulmus alata						
	Morella cerifera	12					
	Rhus copallinum						
	Carpinus caroliniana						
	Quercus rubra	4		1			
	Carya						
	Lindera benzoin	2					
	Liriodendron tulipifera	1					
	Platanus occidentalis	2					
	Acer negundo						
	Acer rubrum						
TOT:	27	41	4	2		1	


Table 3. Damage by Species

	Sec.es	411	Inc Deman	In damar Cater	sects del solices
	Acer negundo	3	3		
	Acer rubrum	1	1		
	Ailanthus altissima	1	1		
	Betula nigra	1	1		
	Carpinus caroliniana	2	2		
	Carya	1	1		
	Carya illinoinensis	2	2		
	Carya ovata	1	1		
	Celtis laevigata	4	4		
	Cornus amomum	5	5		
	Fraxinus pennsylvanica	8	7	1	
	llex verticillata	6	6		
	Lagerstroemia indica	1	1		
	Ligustrum sinense	3	3		
	Lindera benzoin	2	2		
	Liquidambar styraciflua	1	1		
	Liriodendron tulipifera	1	1		
	Morella cerifera	12	12		
	Nyssa sylvatica	1	1		
	Platanus occidentalis	2	2		
	Quercus nigra	1	1		
	Quercus phellos	3	3		
	Quercus rubra	5	4	1	
	Rhus copallinum	1	1		
	Salix nigra	1	1		
	Sambucus canadensis	5	5		
	Ulmus alata	1	1		
TOT:	27	75	73	2	

Table 4. Damage by Plot

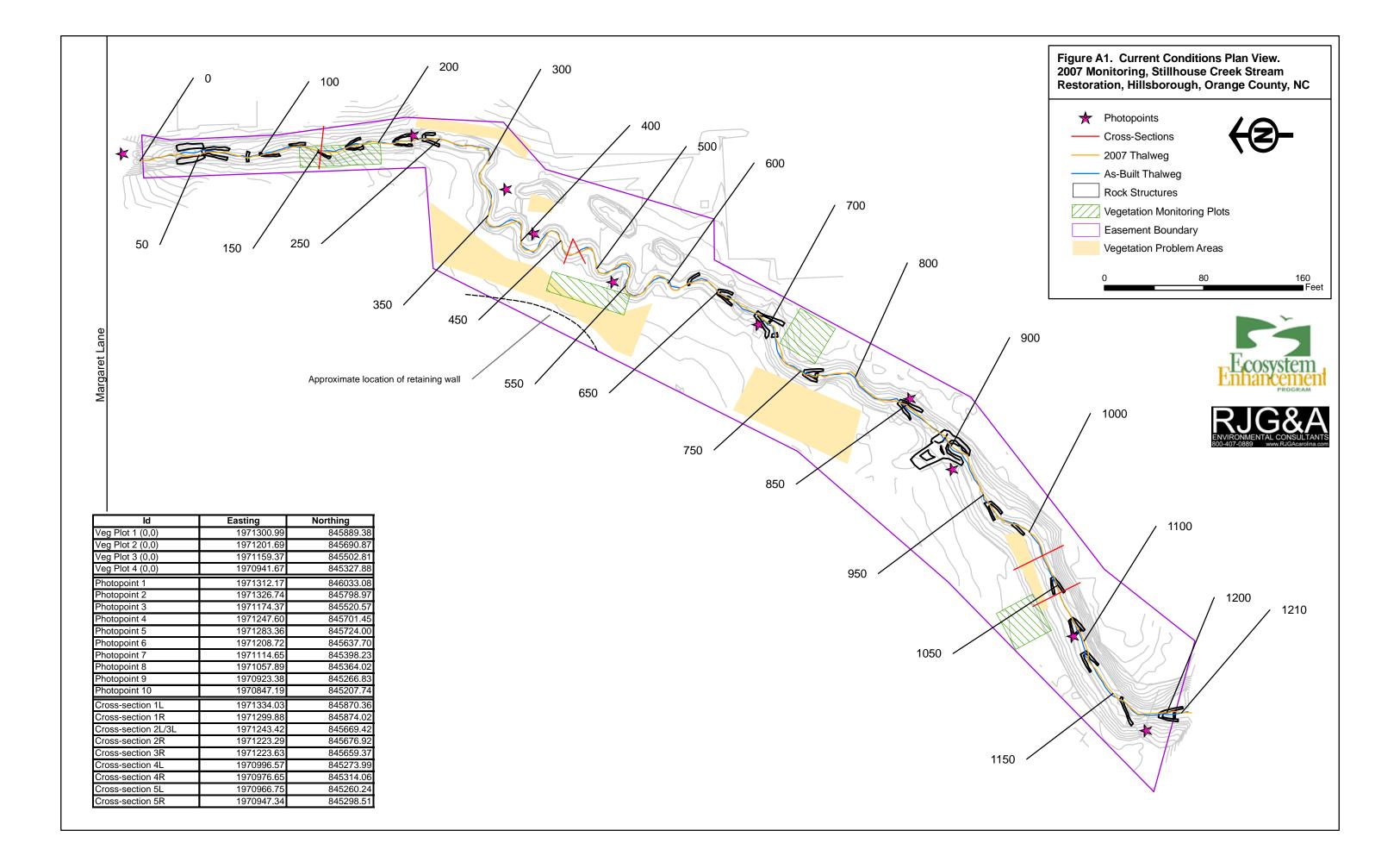
	blor	411.	Inc. Daman.	Ins daman Cateon	sects de la corres
	St_house-jo&sd-0001	23	23		
	St_house-jo&sd-0002	8	8		
	St_house-jo&sd-0003	26	24	2	
	St_house-jo&sd-0004	18	18		
TOT:	4	75	73	2	

Table 5. Stem County by Plot and Species

Table 6. Vegetation Problem Areas – Stillhouse Creek Stream Restoration EEP Project #363									
Feature/Issue	Station/Range	Probable Cause	Photo #						
Limited woody stem planting	235-300	Planting Oversight	VP1						
Low planted woody stem success	400-430	Soil Compaction	VP2						
Low planted woody stem success	320-580	Soil Compaction	VP1						
Low planted woody stem vigor	715-830	Soil Compaction	VP3						
Low planted woody stem success	1000-1060	Soil Compaction	VP4						

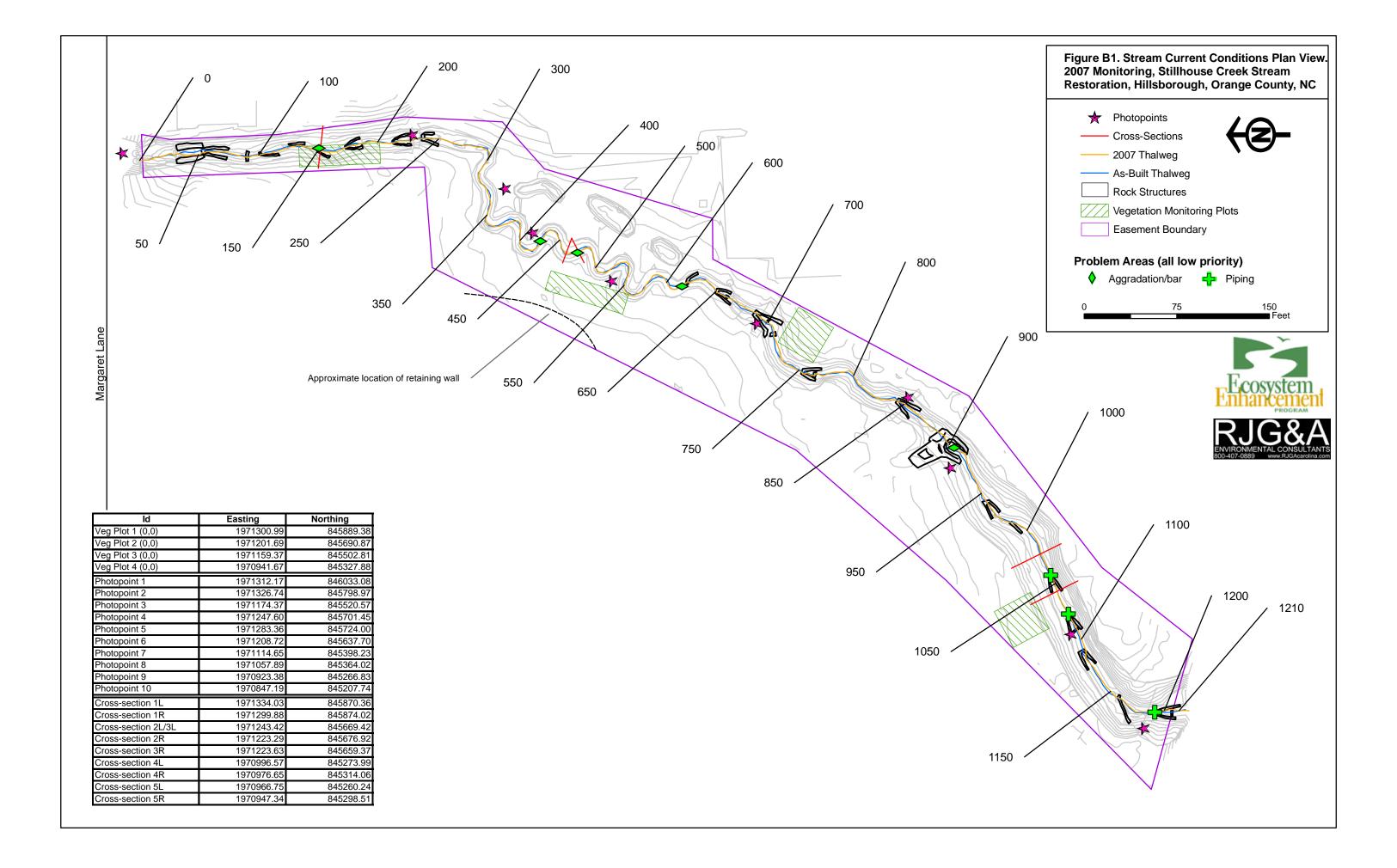
Appendix A2. Vegetation Problem Area Photographs - Year 1 - 2007 - Stillhouse Creek Riparian Buffer Restoration

VP3. Low planted woody stem vigor


VP4. Low planted woody stem success

A3. Vegetation Monitoring Plot Photographs Year 1 - 2007 - Stillhouse Creek Riparian Buffer Restoration

Plot 3 (10/31/07)


Plot 4 (10/31/07)

Appendix B Geomorphologic Raw Data

Figure B1. Current Conditions Plan View

- B2. Stream Problem Areas Table
- B3. Representative Stream Problem Area Photos
- B4. Stream Photo-station Photos
- B5. Qualitative Visual Stability Assessment Table
- B6. Cross section Plots and Raw Data Tables
- B7. Longitudinal Plots and Raw Data Tables
- **B8.** Pebble Counts

ETableB Stream Problem Are	eas - Stillho	use Creek Stream Restoration	n -							
	EEP Project #363									
Feature/Issue	Station	Suspected Cause	Photo #							
Reach 1										
Aggradation/bar in riffle	152	Low flow due to drought	SP1							
Reach 2										
Aggradation/bar in riffle	430	Low flow due to drought	SP1							
Aggradation/bar in riffle	474	Low flow due to drought	SP1							
Aggradation/bar in riffle	618	Low flow due to drought	SP1							
	Reac	h 3								
Aggradation/bar in riffle	905	Low flow due to drought	SP1							
Piping under cross-vane	1042	Low flow due to drought	SP2							
Piping under cross-vane	1075	Low flow due to drought	SP2							
Piping under cross-vane	1190	Low flow due to drought	SP2							

Appendix B3. Stream Problem Photographs - Year 1 - 2007 - Stillhouse Creek Riparian Buffer Restoration

SP1. Aggradation/bar in riffle

SP2. Piping under cross-vane

Appendix B4. Permanent Photopoint Photographs - Year 1 - 2007 - Stillhouse Creek Stream Restoration

PP #3 – Looking South (06/14/07)

PP #4 – Looking Downstream (06/14/07)

Appendix. B4. Permanent Photopoint Photographs - Year 1 - 2007 Stillhouse Creek Stream Restoration

PP #7 – Looking Downstream (06/14/07)

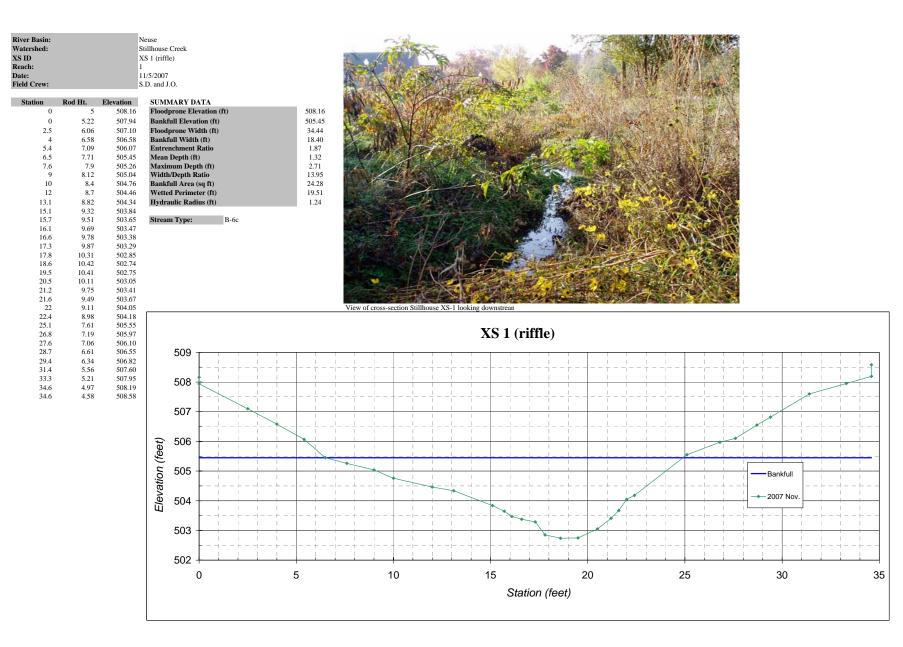
PP #8 – Looking Downstream (06/14/07)

Appendix B4. Permanent Photopoint Photographs - Year 1 - 2007 - Stillhouse Creek Stream Restoration

PP #9 – Looking Downstream (06/14/07)

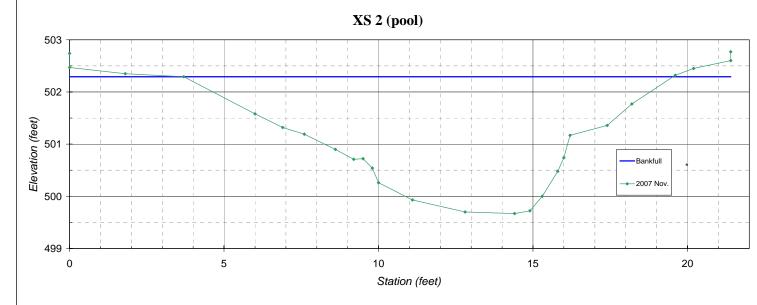
PP #10 – Looking Upstream (06/14/07)

Feature	Metric (per As-built and reference baselines)	(# Stable)	Total	Total	Percent	Feature
Category		Number	Number	Number/	Performing	Performing
		Performing	per As-	feet in	in Stable	Mean (%)
		as Intended	built	Unstable	Condition	
				State		
A. Riffles	1. Present	7	7	0/0	100	
	2. Armor stable	7	7	0/0	100	
	3. Facet grade appears stable	7	7	0/0	100	
	4. Minimal evidence of embedding/fining	7	7	0/0	100	
	5. Length appropriate	7	7	0/0	100	100
D. De ele	1. Present	8	0	0/0	100	
B. Pools	2. Sufficiently deep	8	8	0/0	100	
	3. Length appropriate	8	8	0/0	100	100
		0	0	0/0	100	100
C. Thalweg	1. Upstream of meander bend (run/inflection) centering	0	0	0/0	NA	
U	2. Downstream of meander (glide/inflection) centering	0	0	0/0	NA	NA
			-	a /a		
D. Meanders	1. Outer bend in state of limited/controlled erosion	0	0	0/0	NA	
	2. Of those eroding, # w/concomitant point bar formation	0	0	0/0	NA	
	3. Apparent Rc within spec	0	0	0/0	NA	
	4. Sufficient floodplain access and relief	0	0	0/0	NA	NA
E. Bed	1. General channel bed aggradation areas (bar formation)	0	0	1/6	NA	
(General)	2. Channel bed degradation – areas of increasing downcutting or					
. ,	head cutting	0	0	0/0	NA	NA
_ .,		-	-	0/0	400	
F. Vanes	1. Free of back or arm scour	7	7	0/0	100	
	2. Height appropriate	7	7	0/0	100	
	3. Angle and geometry appear appropriate	7	7	0/0	100	400
	4. Free of piping or other structural failures	7	7	0/0	100	100
G.	1. Free of scour	0	0	0/0	NA	
Wads/Bould	2. Footing stable	0	0	0/0	NA	NA


B5. Visual Morphological Assessment Stillhouse Creek Stream Restoration Project - Reach 1 - Project #363

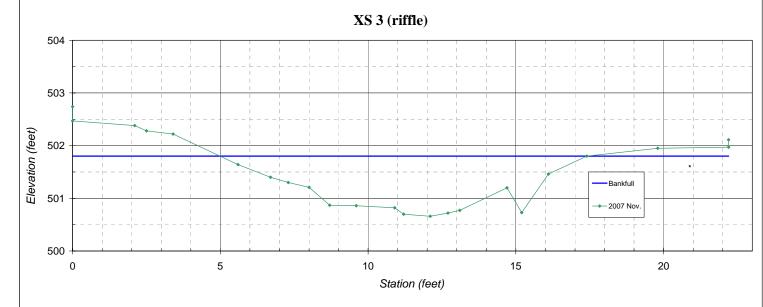
Feature	Metric (per As-built and reference baselines)	(# Stable)	Total	Total	Percent	Feature
Category		Number	Number	Number/	Performing	Performing
		Performing	per As-	feet in	in Stable	Mean (%)
		as Intended	built	Unstable	Condition	
				State		
A. Riffles	1. Present	13	14	1/10	93	
	2. Armor stable	14	14	0/0	100	
	3. Facet grade appears stable	14	14	0/0	100	
	4. Minimal evidence of embedding/fining	14	14	0/0	100	
	5. Length appropriate	14	14	0/0	100	99
B. Pools	1. Present	16	16	0/0	100	
D . 1 0013	2. Sufficiently deep	16	16	0/0	100	
	3. Length appropriate	15	16	1/25	94	98
C. Thalweg	1. Upstream of meander bend (run/inflection) centering	13	15	2/6	87	
	2. Downstream of meander (glide/inflection) centering	15	15	0/0	100	93
D. Meanders	1. Outer bend in state of limited/controlled erosion	15	15	0/0	100	
	2. Of those eroding, # w/concomitant point bar formation	0	15	0/0	0	
	3. Apparent Rc within spec	15	15	0/0	100	
	4. Sufficient floodplain access and relief	15	15	0/0	100	75
E. Bed	1. General channel bed aggradation areas (bar formation)	0	0	4/41	NA	
(General)	2. Channel bed degradation – areas of increasing downcutting or					
. ,	head cutting	0	0	0/0	NA	NA
F. Vanes	1. Free of back or arm scour	1	1	0/0	100	
	2. Height appropriate	1	1	0/0	100	
	3. Angle and geometry appear appropriate	1	1	0/0	100	
	4. Free of piping or other structural failures	1	1	0/0	100	100
G.	1. Free of scour	0	0	0/0	NA	
-		0	0		NA	NA
wads/Bould	2. Footing stable	U	0	0/0	INA	NA

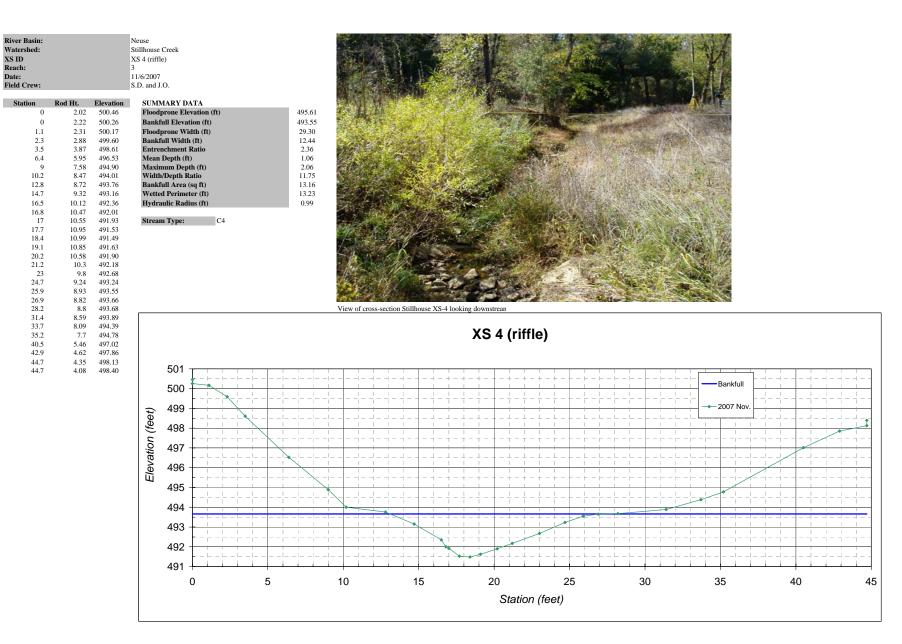
B5. Visual Morphological Assessment Stillhouse Creek Stream Restoration Project - Reach 2 - Project #363


Feature	Metric (per As-built and reference baselines)	(# Stable)	Total	Total	Percent	Feature
Category		Number	Number	Number/	Performing	Performing
		Performing	per As-	feet in	in Stable	Mean (%)
		as Intended	built	Unstable	Condition	
				State		
A. Riffles	1. Present	12	12	1/10	100	
	2. Armor stable	14	14	0/0	100	
	3. Facet grade appears stable	14	14	0/0	100	
	4. Minimal evidence of embedding/fining	14	14	0/0	100	
	5. Length appropriate	14	14	0/0	100	100
B. Pools	1. Present	11	13	0/0	85	
D. 1 0013	2. Sufficiently deep	10	13	0/0	77	
	3. Length appropriate	11	13	1/25	85	82
		_				
C. Thalweg	1. Upstream of meander bend (run/inflection) centering	8	8	0/0	100	
	2. Downstream of meander (glide/inflection) centering	7	8	1/2	88	94
D. Meanders	1. Outer bend in state of limited/controlled erosion	4	4	NA	100	
	2. Of those eroding, # w/concomitant point bar formation	0	4	NA	0	
	3. Apparent Rc within spec	4	4	NA	100	
	4. Sufficient floodplain access and relief	4	4	NA	100	75
E. Bed	1. General channel bed aggradation areas (bar formation)	0	0	1/12	NA	
(General)	2. Channel bed degradation – areas of increasing downcutting or					
	head cutting	0	0	0/0	NA	NA
F. Vanes	1. Free of back or arm scour	12	12	0/0	100	
I. Valles	2. Height appropriate	11	12	1/2	92	
	3. Angle and geometry appear appropriate	12	12	0/0	100	
	4. Free of piping or other structural failures	8	12	4/8	67	90
G.	1. Free of scour	0	0	0/0	NA	
Wads/Bould	2. Footing stable	0	0	0/0	NA	NA

B5. Visual Morphological Assessment Stillhouse Creek Stream Restoration Project - Reach 3 - Year 1 - 2007

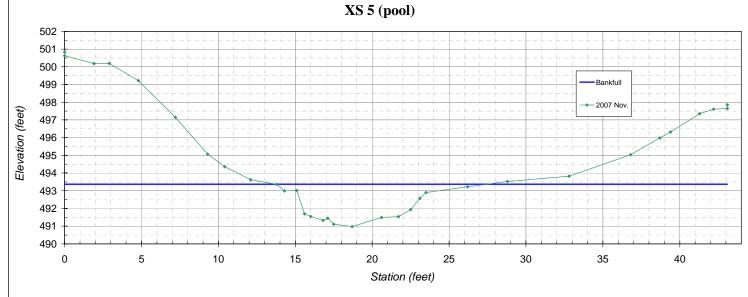
River Basin: Watershed: XS ID Reach: Date: Field Crew:			Neuse Stillhouse Creek XS 2 (pool) 2 11/5/2007 S.D. and J.O.						ALL
Station	Rod Ht.	Elevation					4 A CAR		
0	4.66	502.74	Floodprone Ele		504.91		all of the second	Ly Bar -	
0	4.93	502.47	Bankfull Eleva		502.29				-
1.8 3.7	5.05	502.35 502.29	Floodprone Wi Bankfull Width		94.50			A Traces	Res
5.7	5.11 5.82	502.29 501.58	Entrenchment		15.82 6.00	的现在分词 化二乙酸	A REAL PROPERTY.	ALL BEAR	
6.9	6.08	501.38	Mean Depth (ft		1.43	Sea and the sea of		h L D	
7.6	6.21	501.32	Maximum Dep		2.62	SENT CH		14 200	Net of
8.6	6.5	500.90	Width/Depth R		11.07	an hard	I and	A ALCON	
9.2	6.69	500.71	Bankfull Area		22.62			14 19 10 10	
9.5	6.68	500.72	Wetted Perime		17.21	and the second		1000	
9.8	6.86	500.54	Hydraulic Rad		1.31	The second	Carl Hand	Non-	SPR.
10	7.14	500.26				SPACE SPACE		10-1	Carl I
11.1	7.47	499.93	Stream Type:	E4		2019/2019		NEX-XE	-
12.8	7.7	499.70				C Mar Mar	- Nav	A CAL	X
14.4	7.73	499.67				N. WORKS	The Little		3
14.9	7.68	499.72				Mr. Carolas		Carl Contract	20
15.3 15.8	7.4 6.92	500.00 500.48				11/2 Part			2
15.8	6.66	500.48 500.74							N.
16.2	6.23	501.17				A TRACK		- West	3
17.4	6.04	501.36				to because	CIE AVER		
18.2	5.63	501.77							n.
19.6	5.08	502.32				View of cross-section	n Stillhouse XS-2 loo	oking downstre	ean
20.2	4.95	502.45							
21.4 21.4	4.8 4.63	502.60 502.77						XS	2 (
			503	- I I	1		1		1
				1 1	1	1	1 I I	1	
				I ! !	1 I I	- I		1	
						-++	-++	- +	
								1	
			502	I I			1	1	
			502					1	
								I I	
			÷		+		-++	- +	+ -
			et	1 I	I I			I.	
			ffe					1	
			Elevation (feet)					 ►	-
			<u>0</u>				i i	-	
			at	I I	I I	1	I I		
			20					- <u>-</u>	1 -
			武						
			500	+					
			500	1 I I	1	1	1 I I	1	
								1	
				- - - - - - - - -		- + +	$-\frac{1}{1}$ $\frac{1}{1}$	· _ <u>+</u> ·	+ -
								i.	
							1	i i	
			499	+ · ·				1	1
				0		5		1	10
			1	~		-			

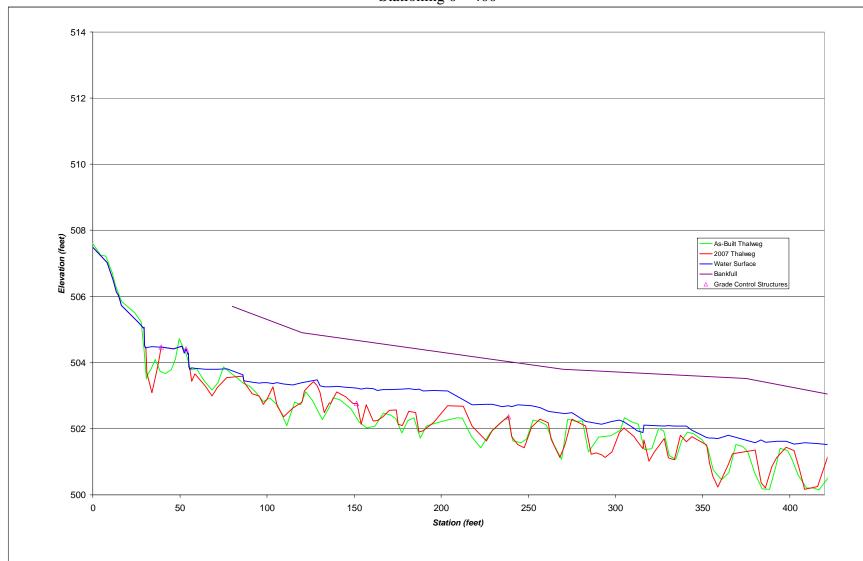

502.94


107.00 12.41 8.70 0.69 1.14 17.87 8.61 13.12

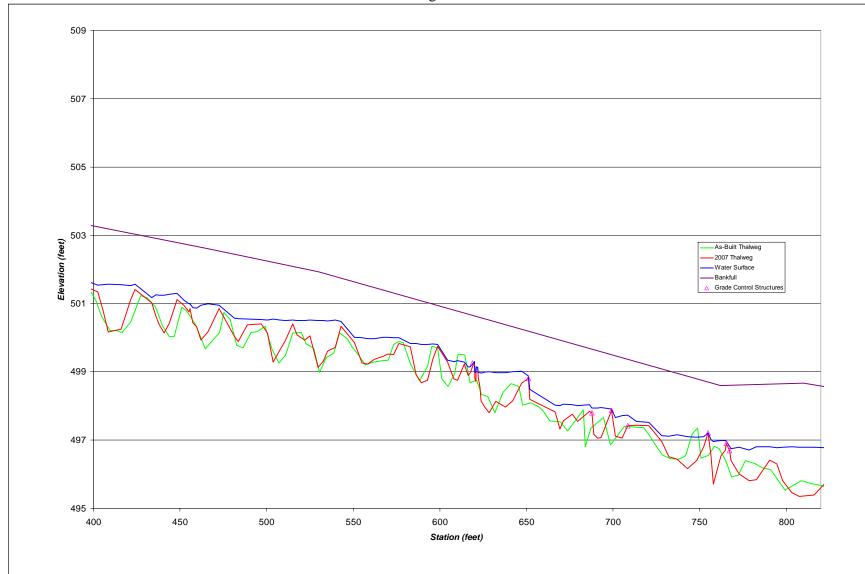
0.66

River Basin: Watershed: XS ID Reach: Date: Field Crew:			Neuse Stillhouse Creek XS 3 (riffle) 2 11/5/2007 S.D. and J.O.
Station	Rod Ht.	Elevation	SUMMARY DATA
0	4.66	502.74	Floodprone Elevation (ft)
0	4.93	502.47	Bankfull Elevation (ft)
2.1	5.02	502.38	Floodprone Width (ft)
2.5	5.12	502.28	Bankfull Width (ft)
3.4	5.18	502.22	Entrenchment Ratio
5.6	5.76	501.64	Mean Depth (ft)
6.7	6	501.40	Maximum Depth (ft)
7.3	6.1	501.30	Width/Depth Ratio
8	6.19	501.21	Bankfull Area (sq ft)
8.7	6.53	500.87	Wetted Perimeter (ft)
9.6	6.54	500.86	Hydraulic Radius (ft)
10.9	6.58	500.82	
11.2	6.7	500.70	Stream Type: C4
12.1	6.74	500.66	
12.7	6.68	500.72	
13.1	6.63	500.77	
14.7	6.2	501.20	
15.2	6.67	500.73	
16.1	5.94	501.46	
17.4	5.6	501.80	
19.8	5.45	501.95	
22.2	5.43	501.97	
22.2	5.29	502.11	

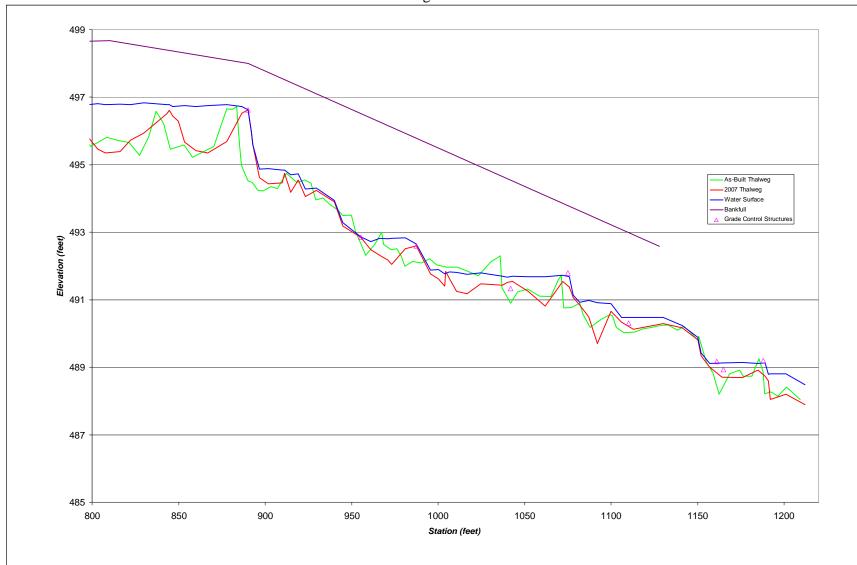

River Basin: Watershed: XS ID Reach: Date: Field Crew:			Neuse Stillhouse Creek XS 5 (pool) 3 11/6/2007 S.D. and J.O.
Station	Rod Ht.	Elevation	SUMMARY DATA
0	1.64	500.84	Floodprone Elevation (ft)
0	1.85	500.63	Bankfull Elevation (ft)
1.9	2.29	500.19	Floodprone Width (ft)
2.9	2.28	500.20	Bankfull Width (ft)
4.8	3.26	499.22	Entrenchment Ratio
7.2	5.33	497.15	Mean Depth (ft)
9.3	7.41	495.07	Maximum Depth (ft)
10.4 12.1	8.11	494.37	Width/Depth Ratio
12.1	8.85 9.11	493.63	Bankfull Area (sq ft)
13.8		493.37	Wetted Perimeter (ft) Hydraulic Radius (ft)
14.5	9.48 9.46	493.00 493.02	Hydraunc Radius (It)
15.6	10.78	495.02	Stream Type: C4
15.0	10.93	491.55	Stream Type.
16.8	11.15	491.33	
17.1	11.03	491.45	
17.5	11.36	491.12	
18.7	11.5	490.98	
20.6	10.98	491.50	
21.7	10.94	491.54	
22.5	10.54	491.94	
23.1	9.9	492.58	
23.5	9.57	492.91	
26.2 28.8	9.25 8.95	493.23 493.53	
32.8	8.65	493.33	
36.8	7.44	495.04	
38.7	6.49	495.99	500
39.4	6.16	496.32	502
41.3	5.12	497.36	501 -
42.2	4.87	497.61	
43.1	4.83	497.65	500
43.1	4.62	497.86	
			499 -
			2 498
			0 497
			g 496 -
			97 497 496 495 495



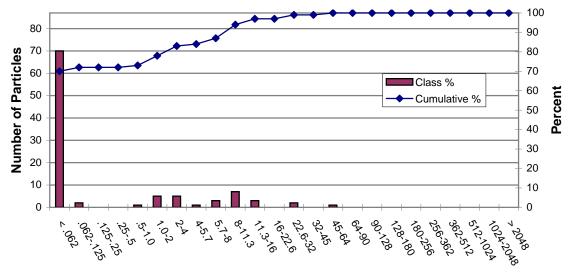
View of cross-section Stillhouse XS-S looking downstrear


494.82 492.91 26.48

8.36 3.17 1.36 1.93 6.13 11.40 9.96 1.14

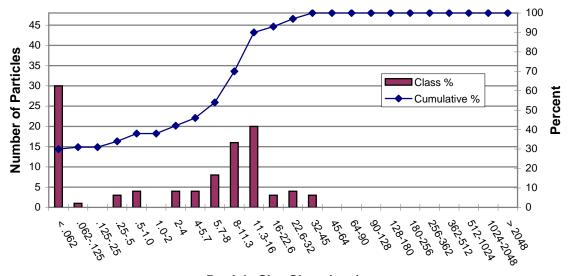


B7. Longitudinal Plots and Raw Data Tables – Stillhouse Creek Stream Restoration – EEP Project #363 Stationing 0 – 400


B7. Longitudinal Plots and Raw Data Tables – Stillhouse Creek Stream Restoration – EEP Project #363 Stationing 400 – 800

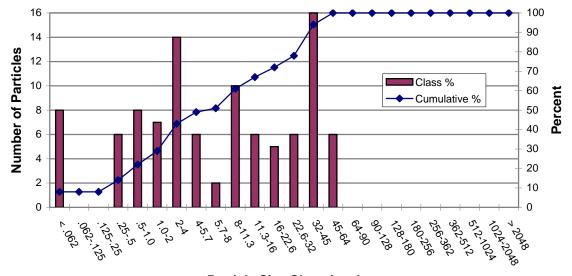
B7. Longitudinal Plots and Raw Data Tables – Stillhouse Creek Stream Restoration – EEP Project #363 Stationing 800 – 1210

B8. Pebble Count - Stillhouse Creek Stream Restoration First Year Monitoring 11/14/2007 Cross Section One


	Particle	Size Range (mm)	Total #	Class %	Cumulative %	-
S/C	Silt/Clay	< .062	70	70	70	
	Very Fine Sand	.062125	2	2	72	
-	Fine Sand	.12525		0	72	
Sand	Medium Sand	.255		0	72	
	Coarse Sand	.5-1.0	1	1	73	
	Very Course Sand	1.0-2	5	5	78	
	Very Fine Gravel	2-4	5	5	83	
	Fine Gravel	4-5.7	1	1	84	
	Fine Gravel	5.7-8	3	3	87	
'el	Medium Gravel	8-11.3	7	7	94	
Gravel	Medium Gravel	11.3-16	3	3	97	
G	Coarse Gravel	16-22.6		0	97	
	Coarse Gravel	22.6-32	2	2	99	
	Very Course Gravel	32-45		0	99	
	Very Course Gravel	45-64	1	1	100	
0	Small Cobble	64-90		0	100	
Cobble	Small Cobble	90-128		0	100	
Cot	Medium Cobble	128-180		0	100	
	Large Cobble	180-256		0	100	
<u>ب</u>	Small Boulders	256-362		0	100	
de	Small Boulders	362-512		0	100	
Boulder	Medium Boulders	512-1024		0	100	
B	Large Boulders	1024-2048		0	100	d ₅₀ = 0.04 mm
	Bedrock	> 2048		0	100	d ₈₄ = 0.57 mm
	Total		100			

Particle Size Class (mm)

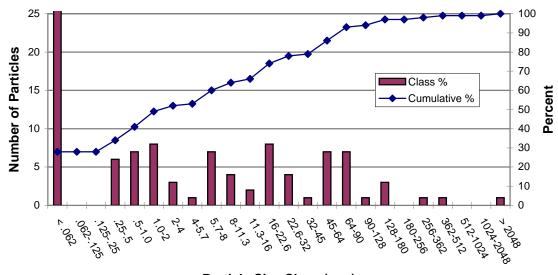
B8. Pebble Count - Stillhouse Creek Stream Restoration First Year Monitoring 11/14/2007 Cross Section Two


	Particle	Size Range (mm)	Total #	Class %	Cumulative %	
S/C	Silt/Clay	< .062	30	30	30	
	Very Fine Sand	.062125	1	1	31	
	Fine Sand	.12525		0	31	
Sand	Medium Sand	.255	3	3	34	
	Coarse Sand	.5-1.0	4	4	38	
	Very Course Sand	1.0-2		0	38	
	Very Fine Gravel	2-4	4	4	42	
	Fine Gravel	4-5.7	4	4	46	
	Fine Gravel	5.7-8	8	8	54	
vel	Medium Gravel	8-11.3	16	16	70	
Gravel	Medium Gravel	11.3-16	20	20	90	
G	Coarse Gravel	16-22.6	3	3	93	
	Coarse Gravel	22.6-32	4	4	97	
	Very Course Gravel	32-45	3	3	100	
	Very Course Gravel	45-64		0	100	
0	Small Cobble	64-90		0	100	
Cobble	Small Cobble	90-128		0	100	
Cot	Medium Cobble	128-180		0	100	
•	Large Cobble	180-256		0	100	
<u>د</u>	Small Boulders	256-362		0	100	
ldei	Small Boulders	362-512		0	100	
Boulder	Medium Boulders	512-1024		0	100	
В	Large Boulders	1024-2048		0	$100 d_{50} = 6.8$	35 r
	Bedrock	> 2048		0	100 d ₈₄ = 14	.59
	Total		100			

Particle Size Class (mm)

B8. Pebble Count - Stillhouse Creek Stream Restoration First Year Monitoring 11/14/2007 Cross Section Three

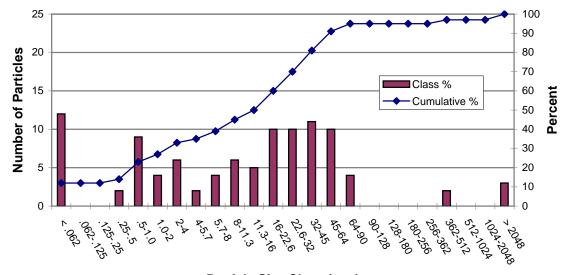
		Cumulative %	Class %	Total #	Size Range (mm)	Particle	
Fine Sand .12525 0 8 Medium Sand .255 6 6 14 Coarse Sand .5-1.0 8 8 22 Very Course Sand 1.0-2 7 7 29 Very Course Sand 1.0-2 7 7 29 Very Fine Gravel 2-4 14 14 43 Fine Gravel 4-5.7 6 6 49 Fine Gravel 5.7-8 2 2 51 Medium Gravel 8-11.3 10 10 61 Medium Gravel 11.3-16 6 6 67 Coarse Gravel 16-22.6 5 5 72 Coarse Gravel 22.6-32 6 6 78 Very Course Gravel 32-45 16 16 94 Very Course Gravel 45-64 6 6 100 Small Cobble 90-128 0 100 100 Medium Cobble 128-180		8	8	8	< .062	Silt/Clay	S/C
Medium Sand .255 6 6 14 Coarse Sand .5-1.0 8 8 22 Very Course Sand 1.0-2 7 7 29 Very Fine Gravel 2-4 14 14 43 Fine Gravel 4-5.7 6 6 49 Fine Gravel 5.7-8 2 2 51 Medium Gravel 8-11.3 10 10 61 Medium Gravel 8-11.3 10 10 61 Medium Gravel 11.3-16 6 6 67 Coarse Gravel 16-22.6 5 5 72 Coarse Gravel 22.45 16 6 94 Very Course Gravel 32-45 16 94 94 Very Course Gravel 45-64 6 6 100 Small Cobble 64-90 0 100 100 Medium Cobble 128-180 0 100 100 Large Cobble <		8	0		.062125	Very Fine Sand	
Coarse Sand .5-1.0 8 8 22 Very Course Sand 1.0-2 7 7 29 Very Fine Gravel 2-4 14 14 43 Fine Gravel 4-5.7 6 6 49 Fine Gravel 5.7-8 2 2 51 Medium Gravel 8-11.3 10 10 61 Medium Gravel 11.3-16 6 6 67 Coarse Gravel 16-22.6 5 5 72 Coarse Gravel 16-22.6 5 5 72 Coarse Gravel 22.6-32 6 6 78 Very Course Gravel 32-45 16 16 94 Very Course Gravel 45-64 6 6 100 Small Cobble 90-128 0 100 100 Medium Cobble 128-180 0 100 100 Large Cobble 180-256 0 100 100 Medium Boulders		8	0		.12525	Fine Sand	Sand
Coarse Sand .5-1.0 8 8 22 Very Course Sand 1.0-2 7 7 29 Very Fine Gravel 2-4 14 14 43 Fine Gravel 4-5.7 6 6 49 Fine Gravel 5.7-8 2 2 51 Medium Gravel 8-11.3 10 10 61 Medium Gravel 11.3-16 6 6 67 Coarse Gravel 16-22.6 5 5 72 Coarse Gravel 16-22.6 5 5 72 Coarse Gravel 22.6-32 6 6 78 Very Course Gravel 32-45 16 16 94 Very Course Gravel 45-64 6 6 100 Small Cobble 90-128 0 100 100 Medium Cobble 128-180 0 100 100 Large Cobble 180-256 0 100 100 Medium Boulders					.255	Medium Sand	
Very Fine Gravel 2-4 14 14 43 Fine Gravel 4-5.7 6 6 49 Fine Gravel 5.7-8 2 2 51 Medium Gravel 8-11.3 10 10 61 Medium Gravel 11.3-16 6 6 67 Coarse Gravel 16-22.6 5 5 72 Coarse Gravel 22.6-32 6 6 78 Very Course Gravel 32-45 16 16 94 Very Course Gravel 45-64 6 6 100 Small Cobble 64-90 0 100 100 Medium Cobble 128-180 0 100 100 Medium Cobble 180-256 0 100 100 Small Boulders 362-512 0 100 100 Medium Boulders 512-1024 0 100 100		22			.5-1.0	Coarse Sand	Š
Fine Gravel 4-5.7 6 6 49 Fine Gravel 5.7-8 2 2 51 Medium Gravel 8-11.3 10 10 61 Medium Gravel 11.3-16 6 6 67 Coarse Gravel 16-22.6 5 5 72 Coarse Gravel 22.6-32 6 6 78 Very Course Gravel 32-45 16 16 94 Very Course Gravel 32-45 16 16 94 Very Course Gravel 45-64 6 6 100 Small Cobble 90-128 0 100 100 Medium Cobble 128-180 0 100 100 Medium Cobble 180-256 0 100 100 Medium Boulders 362-512 0 100 100 Large Boulders 512-1024 0 100 100		29	7	7	1.0-2	Very Course Sand	
Fine Gravel 5.7-8 2 2 51 Medium Gravel 8-11.3 10 10 61 Medium Gravel 11.3-16 6 6 67 Coarse Gravel 16-22.6 5 5 72 Coarse Gravel 22.6-32 6 6 78 Very Course Gravel 32-45 16 16 94 Very Course Gravel 32-45 16 16 94 Very Course Gravel 45-64 6 6 100 Small Cobble 90-128 0 100 100 Medium Cobble 128-180 0 100 100 Medium Cobble 180-256 0 100 100 Medium Boulders 362-512 0 100 100 Medium Boulders 512-1024 0 100 100		43	14	14	2-4	Very Fine Gravel	
Medium Gravel 8-11.3 10 10 61 Medium Gravel 11.3-16 6 6 67 Coarse Gravel 16-22.6 5 5 72 Coarse Gravel 22.6-32 6 6 78 Very Course Gravel 32-45 16 16 94 Very Course Gravel 45-64 6 6 100 Small Cobble 90-128 0 100 100 Medium Cobble 128-180 0 100 100 Medium Boulders 256-362 0 100 100 Medium Boulders 362-512 0 100 100		49	6	6	4-5.7	Fine Gravel	
Medium Gravel 11.3-16 6 6 67 Coarse Gravel 16-22.6 5 5 72 Coarse Gravel 22.6-32 6 6 78 Very Course Gravel 32-45 16 16 94 Very Course Gravel 32-45 16 16 94 Very Course Gravel 45-64 6 6 100 Small Cobble 64-90 0 100 Small Cobble 90-128 0 100 Medium Cobble 128-180 0 100 Large Cobble 180-256 0 100 Small Boulders 362-512 0 100 Medium Boulders 512-1024 0 100 Large Boulders 1024-2048 0 100 de		51	2	2	5.7-8	Fine Gravel	
order order <th< td=""><td></td><td>61</td><td></td><td>10</td><td>8-11.3</td><td>Medium Gravel</td><td>/el</td></th<>		61		10	8-11.3	Medium Gravel	/el
order order <th< td=""><td></td><td></td><td></td><td></td><td>11.3-16</td><td>Medium Gravel</td><td>rav</td></th<>					11.3-16	Medium Gravel	rav
Very Course Gravel 32-45 16 16 94 Very Course Gravel 45-64 6 6 100 Small Cobble 64-90 0 100 Small Cobble 90-128 0 100 Medium Cobble 128-180 0 100 Large Cobble 180-256 0 100 Small Boulders 256-362 0 100 Medium Boulders 512-1024 0 100 Large Boulders 1024-2048 0 100							G
Very Course Gravel 45-64 6 6 100 Small Cobble 64-90 0 100 Small Cobble 90-128 0 100 Medium Cobble 128-180 0 100 Large Cobble 180-256 0 100 Small Boulders 256-362 0 100 Medium Boulders 362-512 0 100 Medium Boulders 512-1024 0 100 Large Boulders 1024-2048 0 100 de			6	6	22.6-32		
Small Cobble 64-90 0 100 Small Cobble 90-128 0 100 Medium Cobble 128-180 0 100 Large Cobble 180-256 0 100 Small Boulders 256-362 0 100 Small Boulders 362-512 0 100 Medium Boulders 512-1024 0 100 Large Boulders 1024-2048 0 100							
Small Cobble 90-128 0 100 Medium Cobble 128-180 0 100 Large Cobble 180-256 0 100 Small Boulders 256-362 0 100 Small Boulders 362-512 0 100 Medium Boulders 512-1024 0 100 Large Boulders 1024-2048 0 100 deget		100	6	6	45-64		
Large Cobble 180-256 0 100 Small Boulders 256-362 0 100 Small Boulders 362-512 0 100 Medium Boulders 512-1024 0 100 Large Boulders 1024-2048 0 100 detect		100			64-90	Small Cobble	e
Large Cobble 180-256 0 100 Small Boulders 256-362 0 100 Small Boulders 362-512 0 100 Medium Boulders 512-1024 0 100 Large Boulders 1024-2048 0 100 detect		100	0		90-128	Small Cobble	pldc
Large Cobble 180-256 0 100 Small Boulders 256-362 0 100 Small Boulders 362-512 0 100 Medium Boulders 512-1024 0 100 Large Boulders 1024-2048 0 100 detect					128-180		Col
Small Boulders 362-512 0 100 Medium Boulders 512-1024 0 100 Large Boulders 1024-2048 0 100		100	0		180-256	Large Cobble	-
Large Boulders 1024-2048 0 100 4		100	0		256-362	Small Boulders	L
Large Boulders 1024-2048 0 100 4		100	0		362-512	Small Boulders	lde
Large Boulders 1024-2048 0 100 de			0		512-1024	Medium Boulders	no
	l ₅₀ = 6.85 mm	100	0		1024-2048	Large Boulders	B
$\begin{array}{c c} \text{Bedrock} & > 2048 & 0 & 100 & \text{G}_{\text{E}} \end{array}$	l ₈₄ = 36.88 mm	100	0		> 2048	Bedrock	
Total 100				100		Total	


Particle Size Class (mm)

B8. Pebble Count - Stillhouse Creek Stream Restoration First Year Monitoring 11/14/2007 **Cross Section Four**

	Particle	Size Range (mm)	Total #	Class %	Cumulative %	
S/C	Silt/Clay	< .062	28	28	28	
	Very Fine Sand	.062125		0	28	
-=	Fine Sand	.12525		0	28	
Sand	Medium Sand	.255	6	6	34	
\mathbf{S}	Coarse Sand	.5-1.0	7	7	41	
	Very Course Sand	1.0-2	8	8	49	
	Very Fine Gravel	2-4	3	3	52	
	Fine Gravel	4-5.7	1	1	53	
	Fine Gravel	5.7-8	7	7	60	
el	Medium Gravel	8-11.3	4	4	64	
Gravel	Medium Gravel	11.3-16	2	2	66	
3	Coarse Gravel	16-22.6	8	8	74	
	Coarse Gravel	22.6-32	4	4	78	
	Very Course Gravel	32-45	1	1	79	
	Very Course Gravel	45-64	7	7	86	
	Small Cobble	64-90	7	7	93	
ble	Small Cobble	90-128	1	1	94	
Cobble	Medium Cobble	128-180	3	3	97	
Ŭ	Large Cobble	180-256		0	97	
• .	Small Boulders	256-362	1	1	98	
Boulder	Small Boulders	362-512	1	1	99	
luo	Medium Boulders	512-1024		0	99	
B	Large Boulders	1024-2048		0	99 $d_{50} = 2.67$	'n
	Bedrock	> 2048	1	1	100 d ₈₄ = 58.5	57
	Total		100			

Particle Size Class (mm)


B8. Pebble Count - Stillhouse Creek Stream Restoration First Year Monitoring 11/14/2007 Cross Section Five

	Particle	Size Range (mm)	Total #	Class %	Cumulative %	
S/C	Silt/Clay	< .062	12	12	12	
	Very Fine Sand	.062125		0	12	
Sand	Fine Sand	.12525		0	12	
	Medium Sand	.255	2	2	14	
\sim	Coarse Sand	.5-1.0	9	9	23	
	Very Course Sand	1.0-2	4	4	27	
	Very Fine Gravel	2-4	6	6	33	
	Fine Gravel	4-5.7	2	2	35	
	Fine Gravel	5.7-8	4	4	39	
/el	Medium Gravel	8-11.3	6	6	45	
Gravel	Medium Gravel	11.3-16	5	5	50	
5	Coarse Gravel	16-22.6	10	10	60	
	Coarse Gravel	22.6-32	10	10	70	
	Very Course Gravel	32-45	11	11	81	
	Very Course Gravel	45-64	10	10	91	
6	Small Cobble	64-90	4	4	95	
Cobble	Small Cobble	90-128		0	95	
Cot	Medium Cobble	128-180		0	95	
•	Large Cobble	180-256		0	95	
<u>د</u>	Small Boulders	256-362		0	95	
Boulder	Small Boulders	362-512	2	2	97	
	Medium Boulders	512-1024		0	97	
B	Large Boulders	1024-2048		0	97	$d_{50} = 1$
	Bedrock	> 2048	3	3	100	d ₈₄ = 5
	Total		100			

Total

Particle Size Class (mm)